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Abstract. In this paper, we consider the global stability of solutions of a Weak Vector
Variational Inequality in a finite-dimensional Euclidean space. Upper semi-continuity of the
solution set mapping is established. And by a scalarization method, we derive a sufficient
condition that guarantees the lower semi-continuity of the solution set mapping for the
Weak Vector Variational Inequality.
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1. Introduction

A Vector Variational Inequality (V V I ) in a finite-dimensional Euclidean
space was firstly proposed by Giannessi (1980), which is the vector-valued
version of the Variational Inequality (for short, V I ) of Hartman and Stam-
pachia (1966). Since then, a great deal of research has been devoted to
the existence of solutions to V V I in various versions; see, e.g., Giannessi,
Mastronei and Pellegrini (1999), Chen (1992), Chen and Craven (1990),
Chen and Li (1996), Chen and Yang (1990), Lee, Kim, Lee and Yen (1998),
Daniilidis and Nadjisavva (1996), Yang (1993) and references therein.

Among many desirable properties of the solution set for V V I , the stabil-
ity analysis is of considerable interest. Nevertheless, until now, little work
has been made in the study of the semi-continuity of the solution set
for V V I , especially there exists no general lower semi-continuity result
in the literature. Lower semi-continuity of the solution set of V V I is
much stronger than upper semi-continuity. It is a much more difficult and
challenging work to derive conditions that guarantee lower semi-continuity
because of the complexity of the problem structure. This paper is tenta-
tively dedicated to the global stability properties for a Weak Vector Vari-
ational Inequality (WV V I ) with respect to perturbation of the underlying
set and functions. Firstly, an upper semi-continuity result of the solution
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set mapping for the WV V I is presented. More importantly, we use a sca-
larization method for analyzing the WV V I and derive a sufficient condi-
tion that ensures lower semi-continuity of the solution set mapping of the
WV V I .

The paper is organized as follows. In Section 2, we introduce the WV V I

and establish the upper semi-continuity of its solution set. The lower semi-
continuity result of the solution set for the WV V I is provided in Section 3.

2. Upper Semi-continuity

Let X be a nonempty, closed, and convex subset of R
n, and let fi : X →

R
n, i = 1, . . . , p, be vector-valued functions. We define f := (f1, . . . , fp) as

follows: for every x ∈X and y ∈R
n,

f (x)(y) := (〈f1(x), y〉, . . . , 〈fp(x), y〉),
where 〈x, y〉 denotes the inner product of the vectors x and y in the Euclid-
ean space.

R
p
+ ={y ∈R

p :yi �0, for all i =1, . . . , p}
and

◦
R

p
+ ={y ∈R

p :yi >0, for all i =1, . . . , p}
denote the non-negative and positive orthants of R

p, respectively.
We denote a �� ◦

R
p
+

0 for the vector a∈Rp if there is, at least, j ∈〈1, p〉 such
that ap �0.

A WV V I consists in finding x̄ ∈X such that

f (x̄)(x − x̄) �� ◦
R

p
+

0, for all x ∈X.

We denote by Sw(f,X) the solution set of the WV V I .
When the set X and the functions fi, i = 1, . . . , p, are perturbed by

a parameter µ, which varies over a set � of R
� (the space of parame-

ters), we can define the parameterized Weak Vector Variational Inequality
(WV V I)µ: finding x̄ ∈X(µ) such that

f (x̄,µ)(x − x̄) �� ◦
R

p
+

0, for all x ∈X(µ).

Here, X is a set-valued mapping from � into R
n, fi, i = 1, . . . , p, are vec-

tor-valued functions on R
n ×�, and

f (x,µ)(y)= (〈f1(x,µ), y〉, . . . , 〈fp(x,µ), y〉).
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For each µ∈�, let S(µ) denote the (possible) nonempty solution set of
(WV V I)µ: S(µ)={x̄ ∈X(µ)|f (x̄,µ)(x − x̄) �� ◦

R
p
+

0, for all x ∈X(µ)}.
The problem of stability analysis in this paper deals with the investi-

gation of the behavior of the solution set S(µ) as the parameter vector
µ varies over the set �. We discuss the continuity (upper semi-continuity
and lower semi-continuity) of S(·) as a set-valued mapping from the set �

into Rn.
Let us first recall some notations and definitions that are used later on.

DEFINITION 2.1. A vector-valued function g :Rn → R
n is said to be

monotone over a closed and convex set X if for any x, y ∈ X,
〈g(y)−g(x), x −y〉�0.

DEFINITION 2.2. A vector-valued function g : Rn → R
n is said to be

pseudo-monotone over a closed and convex set X if for any x, y ∈
X, 〈g(y), x −y〉�0 implies 〈g(x), x −y〉�0.

DEFINITION 2.3. A vector-valued function g: R
n → R

n is said to be
strictly monotone over a closed and convex set X if for any x, y ∈ X,

x �=y, 〈g(y)−g(x), x −y〉>0.

The reader interested in monotonicity and generalized monotonicity is
referred to the paper of Crouzeix (1998) and Zhu and Marcotte (1995).

DEFINITION 2.4. Sawaragi et al. (1985). A set-valued mapping F from
a set X to a set Y is said to be uniformly compact near a point x ∈X, if
there is a neighborhood U of x such that the closure of the set

⋃
x∈U F(x)

is compact.

DEFINITION 2.5. Aubin and Ekeland (1984). A set-valued mapping G

from a set X to a set Y is said to be:

(1) Upper semi-continuous at x∗ ∈ X if for any open set W containing
G(x∗), there exists a neighborhood U of x∗ such that G(x)⊂W for all
x ∈U .

(2) Lower semi-continuous at x∗ ∈ X if for any open set W intersecting
G(x∗), there exists a neighborhood U of x∗ such that G(x)∩W �=∅ for
all x ∈U .

We say that G is continuous at x∗ if it is both lower and upper
semi-continuous; and we say G is continuous in X if it is continuous at
each point of X.
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We now present the upper semi-continuity result of the solution set
mapping S(·).

THEOREM 2.1. If the following assumptions (a)–(d) hold, then S(·) is
upper semi-continuous at µ∈�:

(a) fi, i =1, . . . , p, are continuous;
(b) X:−→→Rn is continuous, convex-valued and compact valued;
(c) X(·) is uniformly compact near µ∈�;
(d) fi(·,µ), i =1, . . . , p, are pseudomonotone.

Proof. We first show that S(·) is a closed mapping.
Take xn ∈S(µn) with µn →µ and xn → x̄. From the assumption (d), we

have that

f (x,µn)(x −xn) �� ◦
R

p
+

0, for all x ∈X(µn). (2.1)

Now, let us take any y ∈X(µ). Construct one open set W0 ={x|‖x −y‖<1}.
By the lower semi-continuity of the mapping X(·), there exists µn0 such that
X(µn0) ∩ W0 �= ∅. Take y0 ∈ X(µn0) ∩ W0 and y0 �= y. Sequentially, we con-
struct the open set Wk =

{
x|‖x −y‖<

‖yk−1−y‖
2

}
, k = 1,2, . . . . Take µnk

such

that ‖µnk
−µ‖<

‖µnk−1 −µ‖
2 such that X(µnk

)∩Wk �=∅, yk ∈X(µnk
)∩Wk, yk �=y.

Thus from (2.1), we deduce that

f (yk,µnk
)(yk −xnk

)∈W :⊂R
p\− ◦

R
p
+. (2.2)

Since f = (f1, . . . , fp) is continuous, it follows that

f (y,µ)(y − x̄) �� ◦
R

p
+

0, for all y ∈X(µ) (2.3)

which yields that x̄ ∈S(µ).
Secondly, we prove that the mapping S(·) is upper semi-continuous.

Otherwise, there would be an open set O with S(µ)⊂O, for µn →µ, there
exist yn ∈S(µn), it holds that

yn �∈O. (2.4)

Then, from the definition of S(·), we have yn ∈X(µn). By the assumption
that X(·) is uniformly compact near µ, there exists y ∈R

n such that yn →y.
Since S(·) is a closed mapping, we get y ∈S(µ)⊂O. Hence, there would be
a natural number N such that yN ∈O. Thus, a contradiction appears.

This establishes upper semi-continuity of S(·).
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3. Lower Semi-continuity

In this section, we establish lower semi-continuity of the solution set map-
ping S(·) by a scalarization method. For this aim, we introduce a scalar
version of the WV V I and establish the equivalence between the WV V I

and a family of scalar V I .
Take ξ ∈ S+ := {x ∈ R

p
+ : ‖x‖ = 1}. In view of the WV V I , we con-

sider the following scalar Variational Inequality (V I)ξ : finding x̄ ∈X such
that

〈F(x̄, ξ), x − x̄〉�0, for all x ∈X,

where F(x̄, ξ) = ∑p

i=1 ξifi(x̄). And the parameterized Variational Inequal-
ity (V I)(ξ,µ) with respect to (WV V I)µ consists in finding x̄ ∈ X(µ) such
that

〈F(x̄,µ, ξ), x − x̄〉�0, for all x ∈X(µ),

where F(x̄,µ, ξ)=∑p

i=1 ξifi(x̄,µ).

We denote by Iξ (µ) the (possible) nonempty solution set of (V I)(ξ,µ).
Then we have the following lemma.

LEMMA 3.1. If X(·) is convex-valued, then for all µ∈�,

S(µ)=
⋃

ξ∈S+

Iξ (µ).

Proof. x̄ ∈S(µ) yields that

{f (x̄,µ)(x − x̄) :x ∈X(µ)}∩− ◦
R

p
+ =∅. (3.1)

Since X(·) is convex-valued, it is clear that the set {x|f (x̄,µ)(x − x̄) :x ∈X(µ)}
is convex. Then by the separation theorem for convex sets there exists
ξ ∈Rp\{0} such that

inf
x∈X(µ)

〈ξ, f (x̄,µ)(x − x̄)〉� sup
y∈− ◦

R
p
+
〈ξ, y〉. (3.2)

This implies that ξ ∈ R
p
+\{0} and 〈ξ, f (x̄,µ)(x − x̄)〉 � 0. Let ξ̄ = ξ/‖ξ‖.

Then, ξ̄ ∈ S+ and 〈F(x̄,µ, ξ̄ ), x − x̄〉� 0 for all x ∈X(µ). This amounts to
saying that x̄ ∈ Iξ̄ (µ).
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Conversely, assume that x̄ ∈ Iξ (µ) where ξ ∈S+. Then

0�
〈 p∑

i=1

ξifi(x̄,µ), x − x̄
〉
=

p∑

i=1

ξi〈fi(x̄,µ), x − x̄〉=〈ξ, f (x̄,µ)(x − x̄)〉

implies that f (x̄,µ)(x − x̄) �� ◦
R

p
+

0.
This establishes the lemma.

LEMMA 3.2. Assume that

(a) fi, i =1, . . . , p, are continuous;
(b) X :−→→Rn is continuous, convex-valued and compact valued.
(c) X(·) is uniformly compact near µ∈�;
(d) fi(·,µ), i =1, . . . , p, are monotone and there exists one strictly monotone

mapping fj (.,µ), j ∈〈1, p〉.
Then Iξ (µ) is nonempty, singleton and continuous at µ.

Proof. (I). The assertion that Iξ (µ) is nonempty holds clearly.
(II). We now prove that Iξ (µ) is a singleton.
If not, take y, z∈ Iξ (µ), y �= z. We have y, z∈X(µ) and

〈F(y,µ, ξ), z−y〉�0. (3.3)

and

〈F(z,µ, ξ), y − z〉�0. (3.4)

Therefore, we obtain

〈F(y,µ, ξ)−F(z,µ, ξ), y − z〉�0.

From the assumption (d), the mapping F(x,µ, ξ) is strictly monotone and
we have

〈F(y,µ, ξ)−F(z,µ, ξ), y − z〉>0.

which follows the contradiction.
(III). Finally, we prove that Iξ (·) is continuous at µ.
For this, assume that µn → µ and Iξ (µ) = x̄. Then by the definition of

Iξ (µ), it follows that x̄ ∈X(µ) and

〈F(x̄,µ, ξ), x − x̄〉�0, for all x ∈X(µ). (3.5)
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Since X is lower semi-continuous, there exist xn ∈X(µn) with xn → x̄.

Since X is convex-valued, compact-valued and fi are continuous, we
know Iξ (µn) �=∅. Let zn ∈ Iξ (µn). Then zn ∈X(µn) and

〈F(zn,µn, ξ), x − zn〉�0, for all x ∈X(µn).

From xn ∈X(µn), we have

〈F(zn,µn, ξ), xn − zn〉�0 (3.6)

And since X is uniformly compact near µ, zn →z. Hence, we obtain, from
the continuity of X, that z∈X(µ). In View of x̄ = Iξ (µ), we have

〈F(x̄,µ, ξ), z− x̄〉�0. (3.7)

By the continuity of fi and (3.6), we obtain that

〈F(z,µ, ξ), x̄ − z〉�0. (3.8)

Combining (3.7) and (3.8), from the monotonicity of F(·,µ, ξ) we have

〈F(x̄,µ, ξ)−F(z,µ, ξ), x̄ − z〉�0.

This yields that z= x̄ from the strictly monotonicity of F(·,µ, ξ).
Thus we have showed that there exist zn =Iξ (µn) with zn → x̄. This estab-

lishes continuity of Iξ (·) at µ∈�.
The proof is completed.
Now, we will present the lower semi-continuity result of the solution set

mapping S(·).

THEOREM 3.1. If the assumptions (a)–(d) in Lemma 3.2 hold, then S(·)
is lower semi-continuous at µ∈�.

Proof. Firstly, S(µ) is nonempty.
Take µn → µ and x ∈ S(µ) = ⋃

ξ∈S+ Iξ (µ). Then there exists ξ ∈ S+ such
that x = Iξ (µ). By Lemma 3.2, we know that Iξ is continuous at µ. Hence,
there exist xn = Iξ (µn) such that xn →x. Note that Iξ (µn)⊂S(µn). Then we
complete the proof.
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